Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2Z)-2-Methylsulfanyl-1,4-di-2-thienylbut-2-ene-1,4-dione

Ai-Hua Chen* and Jun Wu

School of Chemical Engineering and Biological Engineering, Yancheng Institute of Technology, Yancheng 224003, People's Republic of China Correspondence e-mail: chenaihuaycit@163.com

Received 8 November 2007; accepted 15 November 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.129; data-to-parameter ratio = 17.9.

The asymmetric unit of the title compound, $C_{13}H_{10}O_2S_3$, contains two independent molecules, which exhibit different conformations [C=C(SMe)-C(O)-C torsion angles of 81.4 (3) and 80.2 (2)°], normal bond lengths and angles, and short intramolecular S···O distances [2.768 (3) Å in both molecules]. The crystal packing exhibits weak intermolecular C-H···O hydrogen bonds.

Related literature

For details of the preparation of the title compound, see: Yin *et al.* (2006, 2007). For the crystal structures of similar compounds, see: Chen *et al.* (2007); Gao *et al.* (2007). For applications of the title compound, see: Ellison *et al.* (1973); Yuguchi *et al.* (2004).

Experimental

Crystal data

 $\begin{array}{l} C_{13}H_{10}O_2S_3\\ M_r = 294.41\\ \text{Monoclinic, } P_{2_1}/c\\ a = 9.7994 \ (14) \ \mathring{A}\\ b = 27.571 \ (4) \ \mathring{A}\\ c = 10.8814 \ (16) \ \mathring{A}\\ \beta = 113.816 \ (2)^\circ \end{array}$

 $V = 2689.6 (7) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.54 \text{ mm}^{-1}$ T = 297 (2) K $0.20 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{min} = 0.900, T_{max} = 0.948$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	327 parameters
$wR(F^2) = 0.129$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
5868 reflections	$\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

29719 measured reflections

 $R_{\rm int} = 0.022$

5868 independent reflections

5087 reflections with $I > 2\sigma(I)$

Table 1

	Hydrogen-l	bond g	geometry	(Å,	°)
--	------------	--------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} C2-H2\cdots O4^{i}\\ C5-H5\cdots O4^{i}\\ C20-H20\cdots O4^{ii} \end{array}$	0.93	2.52	3.448 (3)	172
	0.93	2.54	3.416 (3)	157
	0.93	2.54	3.438 (3)	162

Symmetry codes: (i) x, y, z + 1; (ii) x + 1, y, z + 1.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors are grateful to Central China Normal University and Dr Guo-Dong Yin.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2356).

References

- Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, A.-H., Wang, Z.-G. & Gao, M. (2007). Acta Cryst. E63, 0161-0162.
- Ellison, R. (1973). Synthesis, pp. 397-412.
- Gao, M., Chen, A.-H., Cao, L.-P. & Wang, Y.-Z. (2007). Acta Cryst. E63, 0792–0793.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Yin, G., Gao, M., She, N., Hu, S., Wu, A. & Pan, Y. (2007). *Synthesis*, pp. 3113–3116.
- Yin, G., Zhou, B., Meng, X., Wu, A. & Pan, Y. (2006). Org. Lett. 8, 2245–2248. Yuguchi, M., Tokuda, M. & Orito, K. (2004). J. Org. Chem. 69, 908–914.

Acta Cryst. (2007). E63, o4810 [doi:10.1107/81600536807059533]

(2Z)-2-Methylsulfanyl-1,4-di-2-thienylbut-2-ene-1,4-dione

A.-H. Chen and J. Wu

Comment

1,4-Dicarbonyl compounds are widely used as synthetic building blocks for further elaboration into substituted cyclopentenones, such as jasmones, rethorolones, cuparenones, prostaglandins, and five-membered heterocyclic compounds, such as furans, pyrroles, thiophenes, pyridazines (Ellison *et al.*, 1973; Yuguchi *et al.*, 2004). As a continuation of our previous studies in this area, (Chen *et al.*, 2007; Gao *et al.*, 2007; Yin *et al.*, 2007). We herein report the structure of the title compound (I) (Fig. 1).

There are two independent molecules in the asymmetric unit. The bond lengths of the C1—C2 and C14—C15 in two molecules are 1.339 (2) and 1.341 (2) Å, respectively, supporting their double-bond character. The torsion angles C2—C1—C8—C9 and C15—C14—C21—C22 are -81.4 (3) and 80.2 (2) %A, respectively, showing the difference in conformations of two molecules. In both molecules, there is a short intramolecular S…O distance of 2.768 (3) Å.

The crystal packing exhibits weak intermolecular C—H…O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the method described by Yin *et al.* (2006). Crystals appropriate for data collection were obtained by slow evaporation from a CH_2Cl_2/CH_3OH (1:1, v/v) solution at 283 K.

Refinement

All H atoms were geometrically positioned (C—H 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ (methyl C).

Figures

Fig. 1. The content of asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.

(2Z)-2-Methylsulfanyl-1,4-di-2-thienylbut-2-ene-1,4-dione

Crystal data

 $C_{13}H_{10}O_2S_3$

 $F_{000} = 1216$

$M_r = 294.41$
Monoclinic, $P2_1/c$
Hall symbol: -P2ybc
<i>a</i> = 9.7994 (14) Å
<i>b</i> = 27.571 (4) Å
<i>c</i> = 10.8814 (16) Å
$\beta = 113.816 \ (2)^{\circ}$
$V = 2689.6 (7) \text{ Å}^3$
Z = 8

Data collection

Bruker SMART 4K CCD area-detector diffractometer	5868 independent reflections
Radiation source: fine-focus sealed tube	5087 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 297(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -12 \rightarrow 12$
$T_{\min} = 0.900, \ T_{\max} = 0.948$	$k = -35 \rightarrow 32$
29719 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.129$	$w = 1/[\sigma^2(F_o^2) + (0.0723P)^2 + 0.9173P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
5868 reflections	$\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$
327 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

 $D_{\rm x} = 1.454 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.3-28.3^{\circ}$ $\mu = 0.54 \text{ mm}^{-1}$ T = 297 (2) KBlock, colourless $0.20 \times 0.20 \times 0.10 \text{ mm}$

Cell parameters from 6482 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.8777 (2)	0.77555 (7)	0.9581 (2)	0.0472 (4)
C2	0.7685 (2)	0.77154 (8)	1.0017 (2)	0.0514 (5)
H2	0.7468	0.7983	1.0426	0.062*
C3	0.6814 (3)	0.72716 (8)	0.9882 (2)	0.0538 (5)
C4	0.5584 (2)	0.72918 (8)	1.0320 (2)	0.0514 (5)
C5	0.5266 (3)	0.76375 (9)	1.1109 (2)	0.0546 (5)
Н5	0.5797	0.7924	1.1414	0.066*
C6	0.4014 (3)	0.74909 (11)	1.1383 (3)	0.0700 (7)
Н6	0.3636	0.7670	1.1899	0.084*
C7	0.3450 (3)	0.70635 (11)	1.0805 (3)	0.0771 (8)
H7	0.2631	0.6918	1.0879	0.093*
C8	0.9616 (2)	0.82346 (8)	0.9849 (2)	0.0484 (5)
С9	0.8910 (2)	0.86269 (7)	0.8925 (2)	0.0455 (4)
C10	0.7624 (3)	0.86089 (9)	0.7771 (2)	0.0592 (6)
H10	0.7021	0.8336	0.7487	0.071*
C11	0.7326 (3)	0.90526 (11)	0.7067 (3)	0.0746 (8)
H11	0.6503	0.9106	0.6265	0.089*
C12	0.8367 (3)	0.93903 (10)	0.7685 (3)	0.0777 (8)
H12	0.8345	0.9702	0.7351	0.093*
C13	1.0565 (3)	0.76053 (11)	0.8186 (3)	0.0706 (7)
H13A	1.0041	0.7867	0.7605	0.106*
H13B	1.0911	0.7382	0.7698	0.106*
H13C	1.1402	0.7732	0.8937	0.106*
C14	0.8364 (2)	0.93124 (7)	0.28464 (19)	0.0406 (4)
C15	0.9289 (2)	0.91501 (8)	0.4059 (2)	0.0460 (4)
H15	0.8959	0.8903	0.4452	0.055*
C16	1.0792 (2)	0.93429 (7)	0.4794 (2)	0.0447 (4)
C17	1.1705 (2)	0.91180 (7)	0.6088 (2)	0.0441 (4)
C18	1.1315 (3)	0.87987 (9)	0.6871 (2)	0.0560 (5)
H18	1.0360	0.8676	0.6642	0.067*
C19	1.2562 (3)	0.86837 (11)	0.8071 (2)	0.0734 (7)
H19	1.2510	0.8478	0.8729	0.088*
C20	1.3836 (3)	0.89032 (10)	0.8162 (2)	0.0702 (7)
H20	1.4755	0.8861	0.8878	0.084*
C21	0.6899 (2)	0.90491 (7)	0.21273 (19)	0.0410 (4)
C22	0.5692 (2)	0.91621 (7)	0.25324 (18)	0.0402 (4)
C23	0.5668 (2)	0.94842 (8)	0.3484 (2)	0.0468 (4)
H23	0.6487	0.9667	0.4027	0.056*
C24	0.4256 (2)	0.95063 (9)	0.3547 (2)	0.0539 (5)
H24	0.4038	0.9705	0.4134	0.065*
C25	0.3249 (2)	0.92002 (9)	0.2642 (2)	0.0556 (5)
H25	0.2265	0.9168	0.2544	0.067*

	Fractional atomic coordinates and	isotropic or equivalent isotro	pic displacement	parameters ((A^2)
--	-----------------------------------	--------------------------------	------------------	--------------	---------

C26	0.7093 (3)	0.98422 (12)	0.0489 (3)	0.0780 (8)
H26A	0.6983	0.9558	-0.0052	0.117*
H26B	0.7164	1.0123	-0.0003	0.117*
H26C	0.6244	0.9873	0.0711	0.117*
O1	0.7101 (2)	0.68979 (6)	0.9424 (2)	0.0768 (5)
O2	1.08117 (19)	0.82733 (7)	1.07963 (18)	0.0719 (5)
O3	1.12945 (16)	0.96742 (6)	0.43439 (16)	0.0576 (4)
O4	0.67672 (18)	0.87642 (6)	0.12342 (16)	0.0575 (4)
S1	0.43580 (8)	0.68155 (2)	0.99352 (7)	0.0719 (2)
S2	0.97234 (7)	0.91905 (2)	0.91322 (7)	0.06458 (19)
S3	0.93242 (7)	0.72952 (2)	0.87829 (7)	0.06165 (17)
S4	1.35647 (6)	0.92628 (2)	0.68299 (6)	0.06146 (18)
S5	0.39848 (6)	0.88857 (2)	0.17198 (5)	0.05342 (16)
S6	0.87586 (6)	0.97902 (2)	0.20071 (6)	0.05825 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0487 (10)	0.0406 (10)	0.0460 (10)	-0.0015 (8)	0.0126 (8)	0.0032 (8)
C2	0.0557 (12)	0.0405 (11)	0.0569 (12)	-0.0059 (9)	0.0218 (10)	-0.0017 (9)
C3	0.0598 (12)	0.0433 (11)	0.0563 (12)	-0.0070 (9)	0.0212 (10)	0.0011 (9)
C4	0.0528 (11)	0.0419 (11)	0.0524 (11)	-0.0109 (8)	0.0141 (9)	0.0034 (9)
C5	0.0510 (11)	0.0528 (12)	0.0610 (13)	-0.0143 (9)	0.0235 (10)	-0.0053 (10)
C6	0.0630 (15)	0.0737 (17)	0.0787 (17)	-0.0072 (13)	0.0342 (13)	-0.0016 (14)
C7	0.0554 (14)	0.084 (2)	0.0864 (19)	-0.0167 (13)	0.0234 (13)	0.0172 (15)
C8	0.0455 (10)	0.0469 (11)	0.0490 (11)	-0.0066 (8)	0.0150 (9)	0.0013 (9)
C9	0.0414 (9)	0.0425 (10)	0.0521 (11)	-0.0059 (8)	0.0184 (8)	0.0000 (8)
C10	0.0500 (12)	0.0547 (13)	0.0604 (13)	-0.0071 (10)	0.0094 (10)	0.0107 (10)
C11	0.0472 (12)	0.0768 (17)	0.0822 (17)	-0.0016 (12)	0.0081 (12)	0.0322 (14)
C12	0.0544 (14)	0.0590 (15)	0.114 (2)	0.0032 (11)	0.0285 (14)	0.0331 (15)
C13	0.0684 (15)	0.0782 (18)	0.0718 (16)	-0.0030 (13)	0.0351 (13)	-0.0022 (13)
C14	0.0384 (9)	0.0375 (9)	0.0482 (10)	-0.0016 (7)	0.0198 (8)	-0.0032 (8)
C15	0.0439 (10)	0.0453 (11)	0.0489 (10)	-0.0059 (8)	0.0189 (8)	0.0008 (8)
C16	0.0397 (9)	0.0454 (11)	0.0492 (10)	0.0013 (8)	0.0183 (8)	-0.0006 (8)
C17	0.0414 (9)	0.0443 (10)	0.0451 (10)	-0.0011 (8)	0.0159 (8)	-0.0064 (8)
C18	0.0534 (12)	0.0670 (14)	0.0454 (11)	-0.0072 (10)	0.0178 (9)	0.0005 (10)
C19	0.0780 (17)	0.0847 (19)	0.0460 (12)	-0.0150 (14)	0.0132 (12)	0.0078 (12)
C20	0.0662 (15)	0.0754 (17)	0.0485 (12)	-0.0043 (13)	0.0020 (11)	-0.0006 (12)
C21	0.0413 (9)	0.0376 (9)	0.0421 (9)	-0.0026 (7)	0.0147 (7)	0.0006 (8)
C22	0.0371 (9)	0.0395 (9)	0.0399 (9)	-0.0050 (7)	0.0113 (7)	0.0010 (7)
C23	0.0453 (10)	0.0438 (11)	0.0484 (10)	-0.0015 (8)	0.0158 (8)	-0.0029 (8)
C24	0.0508 (11)	0.0574 (13)	0.0571 (12)	0.0043 (9)	0.0254 (10)	-0.0018 (10)
C25	0.0418 (10)	0.0674 (14)	0.0584 (12)	0.0021 (9)	0.0212 (9)	0.0077 (11)
C26	0.0602 (14)	0.0858 (19)	0.0701 (16)	-0.0064 (13)	0.0077 (12)	0.0305 (14)
01	0.0985 (14)	0.0438 (9)	0.1046 (15)	-0.0114 (9)	0.0580 (12)	-0.0118 (9)
O2	0.0556 (9)	0.0694 (11)	0.0649 (10)	-0.0141 (8)	-0.0023 (8)	0.0120 (8)
03	0.0433 (8)	0.0595 (9)	0.0660 (9)	-0.0073 (7)	0.0177 (7)	0.0125 (7)
O4	0.0603 (9)	0.0547 (9)	0.0599 (9)	-0.0101 (7)	0.0269 (7)	-0.0186 (7)

S 1	0.0713 (4)	0.0563 (4)	0.0768 (4)	-0.0220 (3)	0.0182 (3)	-0.0003 (3)
S2	0.0508 (3)	0.0491 (3)	0.0863 (4)	-0.0106 (2)	0.0198 (3)	0.0032 (3)
S3	0.0664 (4)	0.0504 (3)	0.0718 (4)	-0.0007(2)	0.0317 (3)	-0.0043 (3)
S4	0.0456 (3)	0.0647 (4)	0.0631 (3)	-0.0076 (2)	0.0105 (2)	0.0019 (3)
S5	0.0424 (3)	0.0632 (4)	0.0513 (3)	-0.0128 (2)	0.0155 (2)	-0.0078 (2)
S6	0.0483 (3)	0.0567 (3)	0.0638 (3)	-0.0093 (2)	0.0164 (2)	0.0152 (3)
Geometric param	neters (Å, °)					
C1—C2		1.339 (3)	C	14—C15		1.340 (3)
C1—C8		1.521 (3)	C	14—C21		1.514 (3)
C1—S3		1.740 (2)	C	14—S6		1.733 (2)
C2—C3		1.465 (3)	C	15—C16		1.463 (3)
C2—H2		0.9300	С	15—H15		0.9300
C3—O1		1.225 (3)	С	16—O3		1.230 (2)
C3—C4		1.465 (3)	С	16—C17		1.467 (3)
C4—C5		1.400 (3)	С	17—C18		1.382 (3)
C4—S1		1.714 (2)	С	17—S4		1.716 (2)
C5—C6		1.433 (3)	C	18—C19		1.417 (3)
С5—Н5		0.9300	C	18—H18		0.9300
С6—С7		1.345 (4)	C	19—C20		1.355 (4)
С6—Н6		0.9300	C	19—H19		0.9300
C7—S1		1.683 (3)	C	20—S4		1.686 (3)
С7—Н7		0.9300	C	20—Н20		0.9300
C8—O2		1.213 (3)	C	21—04		1.215 (2)
С8—С9		1.448 (3)	C	21—C22		1.453 (3)
C9—C10		1.375 (3)	C	22—C23		1.372 (3)
C9—S2		1.719 (2)	C	22—S5		1.7225 (18)
C10-C11		1.410 (3)	C	23—C24		1.414 (3)
C10—H10		0.9300	C	23—Н23		0.9300
C11—C12		1.344 (4)	C	24—C25		1.368 (3)
C11—H11		0.9300	C	24—H24		0.9300
C12—S2		1.691 (3)	C	25—S5		1.692 (2)
C12—H12		0.9300	C	25—Н25		0.9300
C13—S3		1.808 (3)	C	26—S6		1.799 (3)
C13—H13A		0.9600	C	26—H26A		0.9600
C13—H13B		0.9600	C	26—H26B		0.9600
C13—H13C		0.9600	C	26—H26C		0.9600
C2—C1—C8		116.85 (19)	С	14—C15—C16		123.25 (18)
C2—C1—S3		124.61 (17)	С	14—C15—H15		118.4
C8—C1—S3		118.52 (16)	С	16—C15—H15		118.4
C1—C2—C3		123.4 (2)	0	3—C16—C15		121.94 (18)
C1—C2—H2		118.3	0	3—C16—C17		120.60 (18)
С3—С2—Н2		118.3	С	15—C16—C17		117.45 (18)
O1—C3—C2		121.6 (2)	С	18—C17—C16		130.37 (19)
O1—C3—C4		121.2 (2)	С	18—C17—S4		111.33 (16)
C2—C3—C4		117.3 (2)	С	16—C17—S4		118.29 (15)
C5—C4—C3		129.90 (19)	C	17—C18—C19		111.1 (2)
C5-C4-S1		111.32 (17)	C	17—C18—H18		124.4

C3—C4—S1	118.65 (17)	С19—С18—Н18	124.4
C4—C5—C6	110.9 (2)	C20—C19—C18	113.2 (2)
С4—С5—Н5	124.5	С20—С19—Н19	123.4
С6—С5—Н5	124.5	С18—С19—Н19	123.4
C7—C6—C5	112.0 (3)	C19—C20—S4	112.3 (2)
С7—С6—Н6	124.0	С19—С20—Н20	123.9
С5—С6—Н6	124.0	S4—C20—H20	123.9
C6—C7—S1	114.1 (2)	O4—C21—C22	122.99 (18)
С6—С7—Н7	123.0	O4—C21—C14	119.72 (17)
S1—C7—H7	123.0	C22—C21—C14	117.27 (16)
O2—C8—C9	123.44 (19)	C23—C22—C21	129.21 (17)
O2—C8—C1	120.08 (19)	C23—C22—S5	111.39 (15)
C9—C8—C1	116.48 (17)	C21—C22—S5	119.35 (14)
C10C9C8	127.74 (19)	C22—C23—C24	112.33 (19)
C10-C9-S2	110.96 (16)	С22—С23—Н23	123.8
C8—C9—S2	121.18 (15)	С24—С23—Н23	123.8
C9—C10—C11	112.2 (2)	C25—C24—C23	112.0 (2)
С9—С10—Н10	123.9	C25—C24—H24	124.0
C11-C10-H10	123.9	C23—C24—H24	124.0
C12-C11-C10	112.4 (2)	C24—C25—S5	112.74 (17)
C12—C11—H11	123.8	С24—С25—Н25	123.6
C10-C11-H11	123.8	S5—C25—H25	123.6
C11—C12—S2	113.1 (2)	S6—C26—H26A	109.5
C11—C12—H12	123.4	S6—C26—H26B	109.5
S2—C12—H12	123.4	H26A—C26—H26B	109.5
S3—C13—H13A	109.5	S6—C26—H26C	109.5
S3—C13—H13B	109.5	H26A—C26—H26C	109.5
H13A—C13—H13B	109.5	H26B—C26—H26C	109.5
S3—C13—H13C	109.5	C7—S1—C4	91.68 (13)
H13A—C13—H13C	109.5	C12—S2—C9	91.37 (12)
H13B—C13—H13C	109.5	C1—S3—C13	102.81 (12)
C15-C14-C21	118.14 (17)	C20—S4—C17	92.08 (12)
C15—C14—S6	124.49 (15)	C25—S5—C22	91.55 (10)
C21—C14—S6	117.31 (14)	C14—S6—C26	103.40 (11)
C8—C1—C2—C3	-177.6 (2)	C16—C17—C18—C19	-178.5 (2)
S3—C1—C2—C3	0.5 (3)	S4—C17—C18—C19	0.4 (3)
C1—C2—C3—O1	4.3 (4)	C17—C18—C19—C20	-1.1 (4)
C1—C2—C3—C4	-175.8 (2)	C18—C19—C20—S4	1.3 (4)
O1—C3—C4—C5	165.1 (2)	C15—C14—C21—O4	-101.2 (2)
C2—C3—C4—C5	-14.8 (4)	S6—C14—C21—O4	76.3 (2)
O1—C3—C4—S1	-10.4 (3)	C15—C14—C21—C22	80.2 (2)
C2—C3—C4—S1	169.69 (17)	S6-C14-C21-C22	-102.33 (18)
C3—C4—C5—C6	-175.1 (2)	O4—C21—C22—C23	-177.7 (2)
S1—C4—C5—C6	0.7 (3)	C14—C21—C22—C23	0.8 (3)
C4—C5—C6—C7	-0.7 (3)	O4—C21—C22—S5	-0.2 (3)
C5—C6—C7—S1	0.4 (3)	C14—C21—C22—S5	178.31 (14)
C2—C1—C8—O2	98.6 (3)	C21—C22—C23—C24	177.5 (2)
S3—C1—C8—O2	-79.6 (3)	S5—C22—C23—C24	-0.2 (2)
C2—C1—C8—C9	-81.4 (3)	C22—C23—C24—C25	0.0 (3)

S3—C1—C8—C9	100.4 (2)	C23—C24—C25—S5	0.1 (3)
O2—C8—C9—C10	174.5 (2)	C6—C7—S1—C4	0.0 (2)
C1—C8—C9—C10	-5.5 (3)	C5—C4—S1—C7	-0.39 (19)
O2—C8—C9—S2	-1.2 (3)	C3—C4—S1—C7	175.9 (2)
C1—C8—C9—S2	178.76 (15)	C11—C12—S2—C9	0.7 (3)
C8—C9—C10—C11	-175.6 (2)	C10-C9-S2-C12	-0.7 (2)
S2—C9—C10—C11	0.5 (3)	C8—C9—S2—C12	175.7 (2)
C9—C10—C11—C12	0.1 (4)	C2-C1-S3-C13	169.9 (2)
C10-C11-C12-S2	-0.6 (4)	C8—C1—S3—C13	-12.07 (19)
C21-C14-C15-C16	173.87 (18)	C19—C20—S4—C17	-0.9 (2)
S6-C14-C15-C16	-3.4 (3)	C18—C17—S4—C20	0.30 (19)
C14—C15—C16—O3	0.9 (3)	C16—C17—S4—C20	179.33 (18)
C14—C15—C16—C17	-177.61 (19)	C24—C25—S5—C22	-0.19 (19)
O3—C16—C17—C18	169.2 (2)	C23—C22—S5—C25	0.21 (17)
C15-C16-C17-C18	-12.3 (3)	C21—C22—S5—C25	-177.70 (17)
O3—C16—C17—S4	-9.7 (3)	C15-C14-S6-C26	-178.4 (2)
C15—C16—C17—S4	168.90 (15)	C21—C14—S6—C26	4.32 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C2—H2···O4 ⁱ	0.93	2.52	3.448 (3)	172
C5—H5…O4 ⁱ	0.93	2.54	3.416 (3)	157
C20—H20…O4 ⁱⁱ	0.93	2.54	3.438 (3)	162
Symmetry codes: (i) $x, y, z+1$; (ii) $x+1, y, z+1$.				

